Compact differential pressure switch Models DC, DCC

(凪

Applications

- Differential pressure monitoring and control of processes
- Safety-critical applications in general process instrumentation, especially in the chemical and petrochemical industries, oil and gas industries, power generation incl. nuclear power plants, water/wastewater industries, mining
■ For gaseous, liquid and aggressive media, also in aggressive ambience
- Filter and level monitoring

Special features

- No power supply needed for switching of electrical loads
- Robust switch enclosure from aluminium alloy or stainless steel 316L, IP66, NEMA 4X
- Setting ranges from 0 ... 160 mbar to $0 \ldots 40$ bar with high static and high one-sided pressure up to 250 bar
- Intrinsic safety Ex ia available
- 1 set point, SPDT or DPDT, high switching power up to AC $250 \mathrm{~V}, 15 \mathrm{~A}$

Description

These high-quality differential pressure switches have been developed especially for safety-critical applications. The high quality of the products and manufacturing in accordance with ISO 9001 ensure reliable monitoring of your plant. In production, the switches are traced by quality assurance software at every step and subsequently are 100% tested.

In order to ensure as flexible operation as possible, the differential pressure switches are fitted with micro switches, which enable the switching of an electrical load of up to AC $250 \mathrm{~V}, 15$ A directly.

For lower switching power ratings, such as for PLC applications, argon gas-filled micro switches with gold-plated contacts can be selected as an option.

Process Compact Series

Differential pressure switch, model DC

All wetted materials are from stainless steel as a standard. For applications with special requirements on the wetted parts, a version with Mone ${ }^{\circledR}$ is available.

By using a diaphragm measuring system, the model DC differential pressure switch is extremely robust and guarantees optimal operating characteristics and the highest measuring performances, with repeatability lower than 1% of span.

The process connection with a centre distance of 54 mm lower mount allows an easy and comfortable mounting of a standard valve manifold.

Standard version

Measuring system

Double diaphragm with transmission shaft, without sealing elements

Switch enclosure

■ Aluminium alloy, copper-free, epoxy resin coated

- Stainless steel 316L (only available for model DC)

Tamper-proof
Laser-engraved product label from stainless steel

Ingress protection

IP66 per EN/IEC 60529, NEMA 4X

Permissible temperature

Ambient	$\mathrm{T}_{\text {amb }}:$	$-30 \ldots+85^{\circ} \mathrm{C}$
Medium	$\mathrm{T}_{\mathrm{M}}:$	$-30 \ldots+85^{\circ} \mathrm{C}$

Switch contact

Micro switches with fixed dead band

- $1 \times$ SPDT (single pole double throw)
- $1 \times$ DPDT (double pole double throw)

The DPDT function is realised with 2 simultaneously triggering SPDT micro switches within 2% of the span.

| Contact version | Electrical rating (resistive load) | | | Suitable for
 Exia option |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | AC | DC | |
| A | $1 \times$ SPDT, silver | $250 \mathrm{~V}, 15 \mathrm{~A}$ | $24 \mathrm{~V}, 2 \mathrm{~A}, 125 \mathrm{~V}, 0.5 \mathrm{~A}, 220 \mathrm{~V}, 0.25 \mathrm{~A}$ | No |
| B | $1 \times$ SPDT, silver, hermetically sealed, argon gas filling ${ }^{2)}$ | $250 \mathrm{~V}, 15 \mathrm{~A}$ | $24 \mathrm{~V}, 2 \mathrm{~A}, 220 \mathrm{~V}, 0.5 \mathrm{~A}$ | Yes |
| C | $1 \times$ SPDT, gold-plated, hermetically sealed, argon gas filling $\left.{ }^{2}\right)$ | $125 \mathrm{~V}, 1 \mathrm{~A}$ | $24 \mathrm{~V}, 0.5 \mathrm{~A}$ | Yes |
| G | $1 \times$ DPDT, silver | $250 \mathrm{~V}, 1 \mathrm{~A}$ | $24 \mathrm{~V}, 0.5 \mathrm{~A}$ | No |

2) Permissible ambient temperature range: $-30 \ldots+70^{\circ} \mathrm{C}$

Set point adjustment

The set point can be specified by the customer or factory-set within the setting range. Subsequent adjustment of the set point on site is made using the adjustment screw, which is covered by the access cover plate with lead seal option.

Repeatability of the set point

$\leq 1 \%$ of span

Please specify:

Set point, switching direction for the contact, e.g.:
Set point: 5 bar, rising
For optimal performance we suggest to adjust the set point between 25 ... 75% of the setting range.

Example

Setting range: 0 ... 10 bar with one switch contact
Repeatability: 1% of $10 \mathrm{bar}=0.1$ bar
Dead band: (see table setting ranges)
2 x repeatability + dead band $=2 \times 0.1$ bar +0.3 bar $=0.5$ bar
Rising pressure: Adjust set point between 0.5 ... 10 bar.
Falling pressure: Adjust set point between 0 ... 9.5 bar.

Ignition protection type (option)

- Ex ia I Ma (mines), only available for model DC with stainless steel switch enclosure
- Ex ia IIC T6/T4 ${ }^{\text {1) }} \mathrm{Ga}$ (gas)
- Ex ia IIIC T85/T135 ${ }^{\text {1) }} \mathrm{Da}$ (dust)

1) The temperature class is related to the ambient temperature range. See the type examination certificate for further details.

Safety-related maximum values

(only for optional Ex ia versions)

Maximum values	
Voltage $\mathbf{U}_{\mathbf{i}}$	DC 30 V
Current $\mathbf{I}_{\mathbf{i}}$	100 mA
Power $\mathbf{P}_{\mathbf{i}}$	0.75 W
Internal capacitance $\mathbf{C}_{\mathbf{i}}$	$0 \mu \mathrm{~F}$
Internal inductance $\mathbf{L}_{\mathbf{i}}$	0 mH

Process connection

Stainless steel, lower mount (LM)
■ $1 / 4$ NPT female (standard)

- $1 / 2$ NPT, G $1 / 2$ A, G $1 / 4$ A male via adapter
- $1 / 2$ NPT, G $1 / 4$ female via adapter

■ M20 x 1.5 male via adapter

Electrical connection

- $1 / 2$ NPT female (standard)
- $3 / 4$ NPT, M20 x $1.5, G 1 / 2, G 3 / 4$ female
- Cable gland non-armoured, nickel-plated brass
- Cable gland non-armoured, stainless steel (AISI 304)
- Cable gland armoured, nickel-plated brass
- Cable gland armoured, stainless steel (AISI 304)
- MIL connector, 7-pin, DTL 5015

For cable connections to the internal terminal block use wire cross-sections between $0.5 \ldots 2.5 \mathrm{~mm}^{2}$.
For the grounding cable connection to the protective conductor screws use max. $2.5 \mathrm{~mm}^{2}$ for the internal screw and max. $4 \mathrm{~mm}^{2}$ for the external screw.

Dielectric strength

Safety class I (IEC 61298-2: 2008)

Wetted parts, model DC

Setting range	Stainless steel version		NACE version (option) ${ }^{1)}$		Monel version (option)	
	Diaphragm	Process connection	Diaphragm	Process connection	Diaphragm	Process connection
0 ... 160 mbar	AISI 316	AISI 316L	Monel ${ }^{\circledR} 400$	AISI 316L	Monel ${ }^{\circledR} 400$	
0 ... 250 mbar						
0 ... 400 mbar						
0 ... 600 mbar						
0 ... 1 bar						
0 ... 2.5 bar						
0 ... 4 bar	AISI 304					
0 ... 6 bar						
0 ... 10 bar						
0 ... 16 bar	Inconel ${ }^{\circledR} 718$		Inconel ${ }^{\circledR} 718$		-	
0... 25 bar						
0 ... 40 bar						

1) NACE compliant to MR 0175 , ISO 15156 and MR 0103

Wetted parts, model DCC

Setting range	Diaphragm	Process connection
$\mathbf{0} \ldots \mathbf{1 6 0}$ mbar	Inconel $^{\circledR} 718$	Aluminium alloy (EN AW-5082 per
$0 \ldots 250$ mbar		EN 573-3)

Sealing material for all models and versions: NBR

Mounting

- Mounting fixture from stainless steel (AISI 304)
- Option: Mounting bracket for 2" pipe mounting (AISI 304)

Weight

■ approx. 5.4 kg , switch enclosure aluminium alloy

- approx. 5.9 kg , switch enclosure stainless steel

Setting range, model DC

$\Delta \mathrm{p}$-cell	Setting range	Fixed dead band for contact version		Static / One-sided pressure
	in bar	1 contact A, B, C in mbar	1 contact G in mbar	in bar
L	$0 \ldots 0.16$	≤ 6	≤ 12	$\leq 40, \leq 100$ or ≤ 160
	0 ... 0.25	≤ 8	≤ 20	
H	$0 \ldots 0.4$	≤ 20	≤ 40	
	$0 . .0 .6$	≤ 25	≤ 50	
	0... 1	≤ 40	≤ 80	
	0... 2.5	≤ 70	≤ 170	$\leq 40, \leq 100, \leq 160$ or ≤ 250
	$0 . . .4$	≤ 120	≤ 200	
	$0 \ldots 6$	≤ 180	≤ 250	
	0... 10	≤ 300	≤ 400	
	0... 16	≤ 480	≤ 600	
	0... 25	≤ 700	$\leq 1,000$	
V	$0 . . .40$	$\leq 1,200$	$\leq 1,800$	$\leq 40, \leq 100$ or ≤ 160

Other available setting ranges:
■ - $40 \ldots+120$ mbar, $-60 \ldots+190$ mbar, $-200 \ldots+200$ mbar, $-300 \ldots+300$ mbar, $-500 \ldots+500$ mbar
■ -1.25 $\ldots+1.25$ bar, $-2 \ldots+2$ bar, $-3 \ldots+3$ bar, $-5 \ldots+5$ bar, $-8 \ldots+8$ bar, $-12.5 \ldots+12.5$ bar
Setting range, model DCC ${ }^{1)}$

$\Delta \mathrm{p}$-cell	Setting range	Fixed dead band for contact version		Static / One-sided pressure
	in bar	1 contact A, B, C in mbar	1 contact G in mbar	in bar
L	$0 . . .0 .25$	≤ 5	≤ 10	≤ 25
H	$0 . .1$	≤ 30	≤ 50	
	$0 . . .1 .6$	≤ 50	≤ 110	
	$0 . . .2 .5$	≤ 80	≤ 170	
	0... 4	≤ 120	≤ 200	
	$0 \ldots 6$	≤ 120	≤ 200	

1) For clean gas or non-condensing vapour only

Other setting ranges on request.

Assembly

■ Shut-off valve model 910.11, see data sheet AC 09.02
■ Barstock valve model 910.81, see data sheet AC 09.18

- Diaphragm seals, see website
- Differential pressure gauge

Options

- Cleaned for oxygen service
- Offshore version ${ }^{2)}$
- NACE compliant to MR 0175, ISO 15156 and MR $0103{ }^{\text {2) }}$
- Wetted parts from Monel ${ }^{\circledR 3)}$
- Wetted parts dried

2) WIKA recommends argon gas-filled contact versions, use of adjustable dead band allowed.
3) Only available for model DC

Approvals

Logo	Description	Country
	EU declaration of conformity - Pressure equipment directive PED, annex 1, category IV, safety accessories, module B + D - Low voltage directive, EN 60730-1 - ATEX ${ }^{1)}$ directive (option); annex III, IV I M 1 (only available with stainless steel 316L switch enclosure) II 1 GD	European Community
IEC TROEX	IECEx ${ }^{1)}$ per IEC 60079-0, IEC 60079-11, IEC 60079-26 (option) Ex ia I Ma (only available with stainless steel 316L switch enclosure) Ex ia IIC T6/T4 ${ }^{2)}$ Ga Ex ia IIIC T85/T135 2) Da	IECEx member states
$E A[E x$	EAC (option) Hazardous areas (option)	Eurasian Economic Community
「ভ্র	KOSHA (option) Hazardous areas	South Korea

1) Double marking ATEX and IECEx on the same product label.
2) The temperature class is related to the ambient temperature range.

Manufacturer's information and certificates

Logo	Description
SIL.)	SIL 2 rating (option), per IEC 61508 Functional safety The electrical rating for DC applications is limited to $30 \mathrm{~V} / 100 \mathrm{~mA}$ Only available with contact version B or C

Certificates (option)

- 2.2 test report per EN 10204

■ 3.1 inspection certificate per EN 10204
Approvals and certificates, see website

Dimensions in mm

Switch enclosure: Aluminium alloy

Switch enclosure: Stainless steel 316L

Legend

A \ominus Process connection
C Electrical connection
B \oplus Process connection
V Vent

Assembly examples

Direct mounting with valve manifold

Mounting via capillary to diaphragm seals

Ordering information

Model / Static - One-sided pressure / $\Delta \mathrm{p}$-cell / Switch enclosure / Contact version / Setting range / Process connection / Electrical connection / Options

[^0]We reserve the right to make modifications to the specifications and materials.

WIKA

[^0]: © 04/2011 WIKA Alexander Wiegand SE \& Co. KG, all rights reserved.
 The specifications given in this document represent the state of engineering at the time of publishing.

