Differential Pressure Switches

Weatherproof: Series DW

<table>
<thead>
<tr>
<th>Model</th>
<th>Dimensions (mm)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DW40, DW100, DW160</td>
<td>205 x 115 x 65</td>
<td>6.2</td>
</tr>
<tr>
<td>DA40, DA100, DA160</td>
<td>245 x 175 x 66</td>
<td>7.2</td>
</tr>
</tbody>
</table>

- **A** Low pressure attachment
- **B** High pressure attachment
- **C** Cable entry

Explosionproof: Series DA

<table>
<thead>
<tr>
<th>Model</th>
<th>Dimensions (mm)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DW10</td>
<td>207 x 130 x 80</td>
<td>8.2</td>
</tr>
<tr>
<td>DA10</td>
<td>247 x 170 x 82</td>
<td>10</td>
</tr>
</tbody>
</table>

- **A** Low pressure attachment
- **B** High pressure attachment
- **C** Cable entry

Notes

- Dimensions and weights are not binding unless released on certified drawings.
- Before installing, using or carrying out maintenance on the instrument, it is necessary to read and understand the indications given in the attached Instruction Manual.
- The instrument must only be installed and maintained by qualified personnel.
- Installation is to be carried out only after checking that instrument characteristics are consistent with process and plant requirements.
- The functional features of the instrument and its degree of protection are shown on the identification plate fixed to the case.

Safety Instructions

- **Safety Instructions for Use in Hazardous Atmospheres.**
- **Recommendations for Pressure Switch Safe Use.**

Related Document

To authorised document with certificate N° CESI 03 ATEX 004
1. **GENERAL NOTES**

1.1 **FOREWORD**

The wrong choice of a series or a model, as well as the incorrect installation, lead to malfunction and reduce instrument life. Failure to follow the indications given in this manual can cause damage to the instrument, the environment and persons.

1.2 **ALLOWED OVERRANGE**

Pressures exceeding the working range can be occasionally tolerated provided they remain within the limits stated in the instrument features (vacuum or proof pressure). Continuous pressures exceeding the working range can be applied to the instrument, provided they are clearly stated in the instrument features. The current and voltage values stated in the technical specifications and ratings must not be exceeded. Transitory overranges can have a destructive effect on the switch.

1.3 **MECHANICAL VIBRATIONS**

Can generally lead to the wearing of some parts of the instrument or cause false actuation. It is therefore recommended that the instrument be installed in a place where there are no vibrations. In cases where this is impossible it is advisable to take measures to lessen the effects (elastic supports, installation with the pin of the microswitch positioned at right angles to the vibration plane, etc.).

1.4 **TEMPERATURE**

Due to the temperature of both the environment and the process fluid, the temperature of the instrument could exceed the allowed limits (normally from -20° to +70°C). Therefore, in case it does, suitable measures (protection against heat radiation, fluid separators, cooling coils, heated lockers) must be taken. The process fluid or its impurities must not in any case solidify inside the instrument chambers.

2. **OPERATING PRINCIPLE**

The differential pressure, acting on the sensitive diaphragm element, determines its elastic deformation which is used to actuate one or two electric microswitches regulated at set point values. The microswitches are of the snap acting type with automatic reset. When the pressure moves away from the set values, returning towards the normal values, the switch is reset. The dead band (difference between the set point value and the reset value) can be set or adjustable (letter R in the contact codes).

3. **IDENTIFICATION PLATE AND MARKINGS**

The instrument is fitted with a metal plate bearing all its functional characteristics and – in case of explosionproof execution (Series DA) – also the markings prescribed by standard CEI EN 50014. Fig. 1 shows the plate mounted on explosionproof instruments.

Fig. 1 - Explosionproof instruments plate

1. CE marking and identification number of the notified body responsible for production surveillance.
2. Apparatus classification according to ATEX 94/9 CE directive.
3. Type of protection and ambient temperature limits of operation.
4. Notified body that issued the type certificate and number of said certificate.

4. **SET POINT REGULATION**

Each microswitch is independent and can be regulated by means of a screw (for adjustment) in such a way that it is released when the pressure reaches (increasing or decreasing) the desired value (set point). The instrument is usually supplied with the switches set at the setting range value nearest to zero (factory calibration).

The instrument is supplied with an adhesive rating plate showing the set point calibration value. With factory calibration the values are not indicated on the ratings as these are temporary and will be modified with the definitive values.

Prior to installation the instrument must be calibrated and the definitive calibration values written on the adhesive rating plate using a suitable indelible ink pen.

If the instrument has been ordered with a specific calibration, it is a good rule to check the calibration values marked on the relevant adhesive label, prior to installation.

The position of the adjustment screws is given in fig. 2. The effect that the direction of rotation of the adjustment screws has is described on the adhesive plate.
5. SET POINT CALIBRATION

In order to proceed with the calibration and the periodical functional verification of the instrument a suitable calibration circuit (fig. 5) and an adequate pressure source is required.

5.1 PRELIMINARY OPERATIONS

Weatherproof pressure switches (Series DW) (Fig. 3)

Remove the blocking device fixed to the side of the instrument case and the adjustment screw access plate. Remove the cover be rotating it anticlockwise.

Explosionproof pressure switches (Series DA) (Fig. 4)

Loosen the locking headless screw situated on the cover using a 1,5 hexagonal key then unscrew the cover. Remove the internal blocking device inserted on the closure plugs and slide out the plugs.

5.2 CALIBRATION CIRCUIT AND OPERATIONS

Prepare the control circuit as indicated in Fig. 5. The warning lamps should be connected to contact 1 or 2 in the NO or NC position according to the required contact action.

- **Connection of C and NO terminals**
 - If the circuit is open at the working pressure, the switch opens the circuit as the pressure decreases when the desired value is reached.
 - If the circuit is closed at the working pressure, the switch opens the circuit as the pressure decreases when the desired value is reached.

- **Connection of C and NC terminals**
 - If the circuit is closed at the working pressure, the switch opens the circuit as the pressure decreases when the desired value is reached.
 - If the circuit is open at the working pressure, the switch closes the circuit as the pressure decreases when the desired value is reached.
The test instrument should have a measurement range approximately equal to or slightly wider than the pressure switch range and should have an accuracy consistent with the precision required to calibrate the set point.

The pressure switch must be mounted in the normal installation position, i.e. with the pressure connection downwards; the instrument must be connected to the pressure source by the + pipe inlet while the - pipe inlet must be at atmospheric pressure.

Insert the closure plugs of the adjustment screw access holes, block them using the internal device and if necessary seal them with plumbing. Screw on the cover and block it using the headless screw with which it is equipped (Fig. 4).

Replace the supplied protection caps on the pressure attachment and cable conduit.

6. MOUNTING AND CONNECTIONS

6.1 MOUNTING

Surface mount the instrument by means of the holes provided, or pipe mount using the appropriate bracket (see Fig. 9). The chosen position must be such that vibrations, the possibility of shocks or temperature changes are within tolerable limits. With gas or vapour process fluid, the instrument must be positioned higher than the pipe inlet (see Fig. 8). With a liquid process fluid, the instrument can be positioned higher or lower, indifferently (see Fig. 7 and 8).

Connecting lines are an integral part of the instrument in transmitting the measured variable from the measuring point to the instrument.

For a correct installation it is necessary to:

Mount a shut-off valve with drain (root valve) on each process pipe inlet to allow the instrument to be excluded and the connection tubing to be drained. It is recommended that said valve has a capstan blocking device aimed at preventing it being activated casually and without authorisation.

Mount a 3 valve manifold near the instrument to permit possible functional verification on site and removal of the instrument. It is recommended that the manifold is made up of two service valves, one by-pass valve and two suitably connected drain plugs. The three valves with the drains can be reunited by a single device called a “Three valve manifold”.

Mount a three piece joint onto the threaded attachment of the instrument to permit the easy mounting or removal of the instrument itself.

Carry out the connection using a flexible tube in such a way that variations in the temperature of the tube itself do not force the instrument attachment.

Ensure that all the pressure connections are airtight. It is important that there are no leakage in the circuit.

Close root valves, the two service valves, drain plugs and open the by-pass valve.

NOTE: if the instrument is used for level control in tanks under pressure it is recommended that installation is carried out according to the diagram in figure 8; ensuring that:

- the distance K is greater than 0.5 m;
- the seal pot B has a sufficient capacity to maintain the liquid level at the maximum height over time.

Explosionproof pressure switches (Series DA).
6.3 ELECTRICAL CONNECTIONS

It is recommended to carry out the electrical connections according to the applicable standards. In case of explosionproof instruments (Series DA) see also the Standard EN-60079-14. If the electrical connection is carried out in a protected tube, it shall be made so that condensate is prevented from entering instrument enclosure.

The arrangement shown in figure 7 and 8 is therefore recommended.

CAUTION: fittings used for the electrical connection of the pressure switch Series DA (explosionproof) shall be certified to Standards EN 50014 and 50018, and shall guarantee instrument degree of protection (IP65).

Check that there is no power in the lines. Remove the cover and carry out the cabling and connections to the terminal block (see Fig. 2). Flexible cables with a maximum section of 1.2 mm² (16AWG) are recommended using pre-insulated fork thimbles. Do not touch the adjustment screws and do not bend the elastic microswitch supports in order to prevent the instrument calibration being altered. Ensure that no deposits or wire ends remain inside the case.

As soon as connection steps are completed, mount the cover on and make sure it is tight and blocked (See Fig. 3 and 4).

6.4 SPECIAL NOTE FOR INSTALLATION OF CATEGORY 1/2 G PRESSURE SWITCHES

Explosionproof pressure switches (Series DA) can be installed on processes requiring apparatus of group II category 1 in an ambient requiring apparatus of group II category 2 (see Fig. 6).

Fig. 6 - Installation of Group II Cat. 1 / 2 G instruments

7. INSTRUMENT PLUMBING

Weatherproof pressure switches (Series DW)

The plumbing, aimed as a guarantee against possible tampering of the calibration and electrical connections, can be carried out using a flexible steel wire (a) inserted into the holes in the locking nut (c) and the bracket (d) provided for this purpose (see Fig. 3).

Explosionproof pressure switches (Series DA)

Plumbing is not necessary as the cover is blocked with a headless screw, the closure plugs of the adjustment screw access holes are blocked by means of the internal blocking device and the instrument does not have to be opened when installed (see Fig. 4).

8. PUTTING INTO OPERATION

As the signal transmitted by the instrument is used in a complex system, it is necessary that the means of putting it into operation are established by personnel in charge of the plant.

The instrument comes into operation as soon as the root valves are opened and then, afterwards, the service valve attached to the instrument + inlet pipe is opened, the by-pass valve closed and the service valve attached to the instrument + inlet pipe is opened. Any possible drainage of the connection tubing can be carried out by opening the drains positioned on the instrument.

In case of explosionproof instruments (Series DA), initial inspections are to be carried out according to customer procedures and at least in accordance with Standard EN-60079-17.

NOTE: if the instrument is used for level control in tanks under pressure and is installed according to the diagram in Fig. 10 proceed as follows:

Close the root valves V1 and V2 open the valves V3 V4 V5 (the service and by-pass valves). Fill with the process fluid, from plug SB positioned on the seal pot B, bleeding air from the plug S positioned on the seal pot near the V2 valve. Then close S and top up the liquid in B. Remove air from the breather plug S+ and S- positioned on the instrument, topping up the liquid in B. Close the plug SB and the by-pass valve V5 and open the root valves V1 and V2. The instrument is ready for use.

9. FUNCTIONAL VERIFICATION

This will be carried out according to the Client’s control procedures. Series DW instruments can be verified on the plant if installed as illustrated in Fig. 7 or 8.

The instruments Series DA may be checked on site only if apparatus suitable for explosive atmospheres are used and provided that the electric line is not energized.

If this is not the case it is necessary to stop operation, dismount by means of the three piece joints and carry out the verification in a test room.

CAUTION: do not open the cover of explosionproof pressure switches (Series DA) when energized, in explosive atmospheres.

Verification consists in checking the calibration value and possibly regulating the adjustment screw (see par.5).

In case of explosionproof instruments (Series DA), inspections of the electrical installation are to be carried out also according to customer procedures and at least in accordance with Standard EN-60079-17.
10. TROUBLESHOOTING

IMPORTANT NOTE: operations involving replacement of essential components must be carried out at our workshop, especially for instruments with explosionproof certificate; this is to guarantee the user the total and correct restoration of the product original characteristics.

<table>
<thead>
<tr>
<th>MALFUNCTION</th>
<th>PROBABLE CAUSE</th>
<th>REMEDY</th>
</tr>
</thead>
</table>
| Set point shift | - Air bubbles in the connection lines (condensation in the case of use of gas; excluding models DW10 and DA10)
- Solid particles deposited inside the measurement chambers of the instrument (excluding models DW10 and DA10)
- Permanent deformation of the sensitive element due to fatigue or non-tolerated over-ranges
- Variation of the elastic features of the sensitive element due to its chemical corrosion.
- Leakage of filling fluid (excluding models DW10 and DA10). | - Drain using the appropriate plugs
- Dismount the measurement chambers and clean them (during the mounting phase the screw locking couple is 80 N/m)
- Recalibrate or replace the sensitive element.
- Recalibrate or replace the sensitive element with another made of a suitable material. If necessary apply a fluid separator
- Send to the constructor for checking |
| Slow response | - Clogged or obstructed connection line.
- Root or service valve partially closed.
- Too viscous fluid. | - Check and clean line.
- Open valve.
- Provide instrument with suitable fluid separator. |
| No actuation or undue actuation | - Root or service valve closed.
- By-pass valve open.
- Microswitch contacts damaged.
- Loosened electrical joints.
- Interrupted or short-circuited electrical line. | - Open the valve.
- Close the valve.
- Replace the microswitch.
- Check all electrical joints.
- Check the conditions of the electrical line. |
| Undue actuation | - Accidental shocks or excessive mechanical vibrations. | - Modify the mounting. |

11. STOPPING AND DISMOUNTING

Before proceeding with these operations ensure that the plant or machines have been put into the conditions foreseen to allow these operations.

With reference to figures 7 and 8
Remove the power supply (signal) from the electrical line.
Close the service valve (2) and open the by-pass valve. Carefully open the drains.
Do not dispose of the process fluid into the environment, if this can cause pollution or damage to people.

Unscrew the three piece joint (1).

Unscrew the three piece joint (11) (electrical cable tubing).
Remove the instrument cover and disconnect the electrical cables from the terminal block and earth screws.

In case of explosionproof instruments (Series DA) it is recommended to follow - at least – the standard EN-60079-17 for the withdrawal from service of electrical apparatus.

12. DEMOLITION

The instruments are mainly made of stainless steel and aluminium and therefore, once the electrical parts have been dismounted and the parts coming into contact with fluids which could be harmful to people or the environment have been properly dealt with, they can be scrapped.
WEATHERPROOF

Fig. 7 - Example of connections

<table>
<thead>
<tr>
<th>1</th>
<th>Three pieces fitting</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Three valves manifold</td>
</tr>
<tr>
<td>3</td>
<td>Three pieces fitting</td>
</tr>
<tr>
<td>4</td>
<td>Piping</td>
</tr>
</tbody>
</table>

EXPLOSIONPROOF

Fig. 8 - Example of connections

<table>
<thead>
<tr>
<th>5</th>
<th>Three pieces fitting</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Root valve with drain</td>
</tr>
<tr>
<td>7</td>
<td>Filter or nozzle</td>
</tr>
<tr>
<td>8</td>
<td>Check inlet and drain plug</td>
</tr>
</tbody>
</table>

Fig. 9 - Example of mounting

Montaggio a parete

Montaggio su staffa per tubo da 2”

Fig. 10 - Level check of tanks under pressure using wetted tube

NOTE With gas or vapour process fluid, the instrument must be positioned higher than the pipe inlet (see Fig. 8). With a liquid process fluid, the instrument can be positioned higher or lower, indifferently (see Fig. 7 e 8).