ИКСУ-2012

Калибратор-измеритель унифицированных сигналов прецизионный

- Прецизионное средство измерений для поверки, калибровки и настройки рабочих средств измерений
- Измерение и воспроизведение сигналов термопреобразователей сопротивления, термоэлектрических преобразователей, силы и напряжения постоянного тока, электрического сопротивления
- Измерение и воспроизведение унифицированных сигналов (свободная логика настройки нормирующего преобразователя)
- Поддержка HART-протокола
- Функция поверки датчиков давления
- Функция поверки термопреобразователей
- Функция поверки вторичных приборов
- Функция тестирования реле
- Питание от встроенных аккумуляторов или сетевого блока питания
- Запись результатов во встроенную память
- Цветной сенсорный экран
- Климатическое исполнение C4 (-20...+50 °C)
- Внесены в Госреестр средств измерений под №56318-14, ТУ 4381-113-13282997-2013

Сертификаты и разрешительные документы

- Свидетельство об утверждении типа средства измерений RU.C.34.004.A № 53917
- Сертификат соответствия техническим регламентам таможенного союза: ТР ТС 020/2011 «Электромагнитная совместимость» и ТР ТС 004/2011 «О безопасности низковольтного оборудования» № ТС RU C-RU.МЛ06.В.00069
- Беларусь. Сертификат об утверждении типа средства измерений № 10316
- Казахстан. Сертификат о признании утверждения типа средств измерений № 10867
- Казахстан. Разрешение на применение оборудования № KZ29VEH00001714

Назначение

Калибратор-измеритель унифицированных сигналов ИКСУ-2012 предназначен для воспроизведения и измерения:

- электрических сигналов силы постоянного тока;
- электрических сигналов напряжения постоянного тока;
- сопротивления постоянному току;
- сигналов термопреобразователей сопротивления (TC) по ГОСТ 6651-2009, DIN 43760;
- сигналов термоэлектрических преобразователей (ТП) по ГОСТ Р 8.585-2001;
- унифицированных сигналов I, U.

Измерение сигналов преобразователей давления эталонных ПДЭ-020(Ex), ПДЭ-020И(Ex).

Измерение сигналов термометров цифровых эталонных ТЦЭ-005/М3 (подключение эталонных ПТСВ).

Поддержка HART-протокола.

ИКСУ-2012 используется в качестве эталонного (образцового) средства измерений при поверке рабочих средств измерений, а также в качестве высокоточного рабочего средства измерений при калибровке, поверке и настройке рабочих средств измерений как в лабораторных и промышленных, так и в полевых условиях.

Краткое описание

ИКСУ-2012 — это многофункциональный микропроцессорный прибор, режимы работы которого задаются как при помощи цветного сенсорного экрана, подключаемого механического манипулятора (мышь) и клавиатуры, так и при помощи внешнего программного обеспечения (ПО), установленного на персональном компьютере (ПК)

- 1 канал измерения;
- 1 канал воспроизведения;
- считывание данных преобразователей давления эталонных ПДЭ-020(Ех), ПДЭ-020И(Ех);
- считывание данных термометров эталонных цифровых ТЦЭ-005/М3 (обработка сигналов от эталонных ПТСВ);
- воспроизведение и измерение сигналов ТС и ТП различных НСХ;
- 2 канала тестирования реле;
- ручная или автоматическая компенсация температуры «холодного спая» в режимах работы с ТП;
- функция HART- коммуникатора;
- встроенный стабилизатор напряжения для питания первичных преобразователей (= 24 В);

- звуковой сигнал при перегрузке в режиме калибровки преобразователей давления;
- время установления рабочего режима не более 1 мин;
- цветной 7-дюймовый ТҒТ экран с LED-подсветкой и сенсорным управлением;
- на экране дисплея ИКСУ-2012 отображаются результаты воспроизведения и измерения в цифровом виде, а также сведения о режимах работы ИКСУ-2012, испытуемом оборудовании, регламентированном допуске для испытуемого СИ (в режиме поверки термопреобразователей согласно ГОСТ 6651-2009 и ГОСТ Р 8.585-2001);
- сохранение результатов и режимов работы во внутреннюю память ИКСУ-2012 при выключении питания;
- запись в архив (в архив записываются все измеряемые и воспроизводимые величины, справочная информация об испытуемом СИ, режиме работы ИКСУ-2012);
- перенос архива на съемный носитель (USB-flash накопитель);
- графический дата логгер с возможностью сохранения массива данных на съемный носитель;
- программное обеспечение (ПО) автоматизированное рабочее место «АРМ ИКСУ-2012», позволяющее калибровать первичные преобразователи и вторичные приборы как в режиме воспроизведения, так и в режиме измерения сигналов;
- функции ПО «АРМ ИКСУ-2012»:
 - управление ИКСУ-2012, ПДЭ-020(Ex), ПДЭ-020И(Ex), ТЦЭ-005/М3;
 - конфигурирование (настройка) каналов измерения и генерации;
 - сбор оперативной информации и организация ее хранения;
 - отображение информации в цифровом и графическом виде;
 - анализ и обработка полученных данных (с выдачей протокола поверки);
- функции HART-коммуникатора:
 - считывание измеренных значений;
 - конфигурирование датчика;
 - подстройка токового выхода;
 - градуировка сенсора;
- напряжение питания:
 - =18,5 В (от встроенных аккумуляторов);
 - =24 В (от сетевого блока питания (адаптера), входящего в комплект поставки);
- масса не более 3 кг.

Показатели надёжности, гарантийный срок

- ИКСУ-2012 соответствует:
 - по устойчивости к климатическим воздействиям группе исполнения С4 по ГОСТ Р 52931-2008, но при температуре окружающего воздуха от минус 20 до плюс 50 °C;
 - по степени защиты от попадания внутрь ИКСУ-2012 пыли и воды в соответствии с ГОСТ 14254-96 IP20;
- Гарантийный срок эксплуатации ИКСУ-2012 5 лет со дня продажи.

Поверка

Поверка ИКСУ-2012 производится в соответствии с методикой поверки «Измерители-калибраторы унифицирован-ных сигналов прецизионные ИКСУ-2012 НКГЖ.408741.004МП»;

Межповерочный интервал — 2 года.

Метрологические характеристики

Таблица 1.

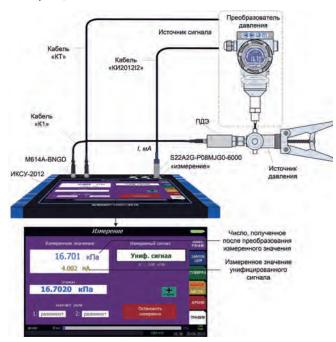
Воспроизводи-	Диапазон		Пределы допускаемой основной абсолютной погрешности (в нормальных условиях при температуре (20±5) °C)		Пределы допускаемой абсолютной погрешности (в пределах рабочих температур −20+50 °C)		
мая и измеряе- мая величина	воспроиз- ведения	измерений	воспроизводимых величин	Измеряемых величин	воспроизводимых величин	Измеряемых величин	
Ток	025 mA	025 mA	±(10 ⁻⁴ × I + 1) MKA	±(10 ⁻⁴ × I + 1) мкА	$\pm (2 \times 10^{-4} \times I + 2)$ MKA	$\pm (2 \times 10^{-4} \times I + 2) \text{ MKA}$	
Напряжение	-10100 MB	-10100 мВ	±(7 × 10 ⁻⁵ × U + 3) мкВ	±(7 × 10 ⁻⁵ × U + 3) мкВ	$\pm (14 \times 10^{-5} \times U + 6)$ мкВ	$\pm(14 \times 10^{-5} \times U + 6)$ мкВ	
	012 B	0120 В	±3 MB	±(12,5 × 10 ⁻⁵ × U + 5) мВ	±6 MB	$\pm (25 \times 10^{-5} \times U + 10) \text{ MB}$	
Сопротивление*	0180 Ом	0320 Ом	±0,015 Om	±0,01 Om	±0,025 Om	±0,02 Om	
	180320 Om	_	±0,025 Om	-	±0,04 Om	-	

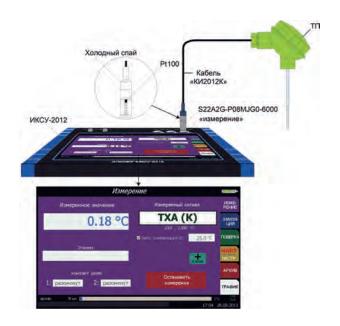
^{*—} при работе с типом сигнала «Сопротивление УСО» ИКСУ-2012 осуществляет воспроизведение сигнала в виде сопротивления постоянному току в диапазоне (0...320) Ом с повышенным быстродействием (до 10 Гц). Пределы допускаемой основной абсолютной погрешности — ±0,1 Ом.

	Диапазон		Пределы допускаемой основной абсолютной погрешности				
Тип термопреобразователя	воспроизведения	измерений	в нормальных условиях при температуре (20±5) °C		в пределах рабочих температур −20+50 °C		
Термопреобразователи	температуры, °С	температуры, °С	воспроизводимых температур, °C	измеряемых температур, °C	воспроизводимых температур, °C	измеряемых температур, °C	
50M	- 50+200	-50+200	±0,08	±0,05	±0,15	±0,08	
100M		-50+200	±0,05	±0,03	±0,08	±0,05	
50M	E0 1200	-50+200	±0,08	±0,05	±0,15	±0,08	
100M	− 50+200	-50+200	±0,05	±0,03	±0,08	±0,05	
50П	-200+600	-200+600	±0,08	±0,05	±0,15	±0,08	
100Π	-200+200	-200+600	±0,03	±0,03	±0,05	±0,05	
10011	+200+600	_	±0,05	-	±0,08	<u> </u>	
Pt100	-200+200	-200+600	±0,03	±0,03	±0,05	±0,05	
11100	+200600	_	±0,05	_	±0,08	_	
TXA(K)	-2101300	-2101300	±0,3	±0,3	±0,5	±0,5	
TXK(L)	-200+600	-200+600	±0,3	±0,3	±0,5	±0,5	
тжк(Ј)	-200+1100	-200+1100	±0,3	±0,3	±0,5	±0,5	
ТПР(В)	+300+1800	+300+1800	±2	±2	±2,5	±2,5	
тпп(s)	0+1700	0+1700	±1	±1	±2	±2	
TDD(A 1)	0+1200	0+1200	±2	±2	±3,5	±3,5	
TBP(A-1)	+1200+2500	+1200+2500	±2,5	±2	±3,5	±3,5	
TMK(T)	-50+400	-50+400	±0,3	±0,3	±0,35	±0,35	
THH(N)	-110+1300	-110+1300	±0,2	±0,2	±0,25	±0,25	

Соответствие требованиям, предъявляемым к рабочим эталонам

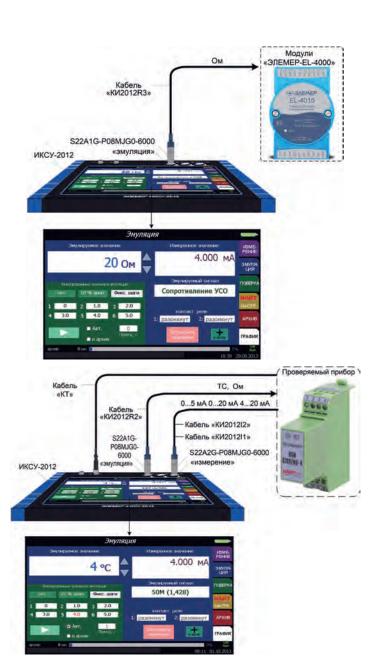
Рабочий эталон	Разряд рабочего эталона	Нормативный документ
Единицы силы постоянного электрического тока	1	ΓΟCT 8.022-91
Единицы постоянного электрического напряжения	3	ГОСТ 8.027-2001
Единицы электрического сопротивления	2	Приказ Росстандарта № 146 от 15.02.16 г.

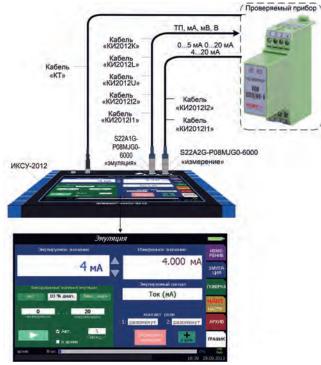

Измерение


В этом режиме пользователь имеет возможность проводить прецизионные измерения сигналов:

- термоэлектрического преобразователя (ТП) с преобразованием входного сигнала в физическую величину (°C) в соответствии с НСХ первичного преобразователя;
- термопреобразователей сопротивления (ТС) с преобразованием входного сигнала в физическую величину (°С) в соответствии с НСХ первичного преобразователя;
- напряжения (мВ, В);
- постоянного тока (мА);
- активного сопротивления постоянному току (Ом).
- унифицированных сигналов силы и напряжения постоянного тока (датчики давления, термопреобразователи с унифицированным выходным сигналом, тензометрические мосты и т. д.) с преобразованием входного сигнала в физическую величину (°С, кПа, МПа, кгс/см², кгс/м², мм. рт. ст., bar, psi) в оответствии с нижним пределом измерений(НПИ) и верхним пределом измерений(ВПИ);
- преобразователей давления эталонных ПДЭ-020(И);
- термометров цифровых эталонных ТЦЭ-005/М3 (измерение сигналов эталонных ПТСВ);

Прибор может использоваться как прецизионный электронный тестер (мультиметр) при соблюдении пределов и номиналов измерения.

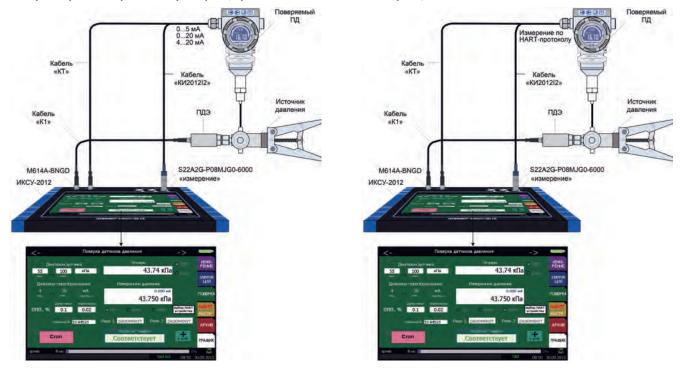




Эмуляция

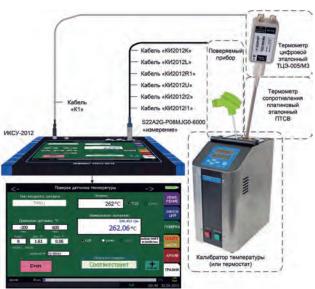
Режим предназначен для генерации ИКСУ-2012 выходного сигнала с последующей передачей его на вход пове-ряемого измерительного прибора с целью проверки точности проводимых им измерений от источников различного типа. Применяется так же для проверки корректности работы систем управления без подключения к реальному объекту. Исполь-зование ИКСУ-2012 в этом режиме может быть полезно при организации демонстрационных макетов и стендов. Пользователь имеет возможность выбора типа генерируемого выходного сигнала:

- термоэлектрического преобразователя (ТП) с преобразованием выходного сигнала из физической величины (°C) в соответствии с НСХ;
- термопреобразователя сопротивления (TC) с преобразованием выходного сигнала из физической величины (°C) в соответствии с HCX;
- источника постоянного напряжения (мВ, В);
- источника постоянного тока (мА);
- сопротивления постоянному току (Ом);
- унифицированного сигнала силы или напряжения постоянного тока (датчики давления, термопреобразователи с унифицированным выходным сигналом, тензометрические мосты и т. д.) с преобразованием из физической величины (°С, кПа, МПа, кгс/см², кгс/м², мм. рт. ст., bar, psi) в соответствии с НПИ и ВПИ.



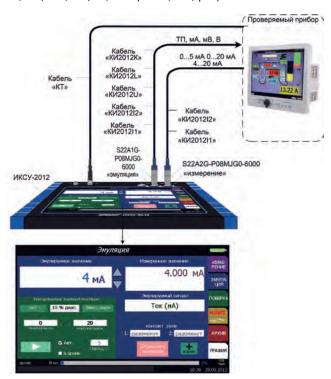
Поверка

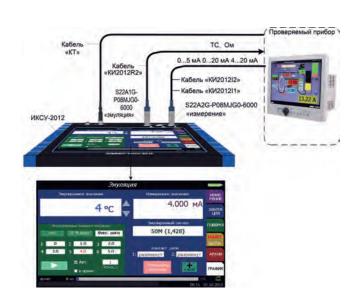
Поверка преобразователя давления (ПД) производится путем сравнения его показаний с показаниями эталонного датчика давления ПДЭ-020(И). Результаты измерений от поверяемого и эталонного датчиков выводятся на дисплей ИКСУ-2012. Пользователь имеет возможность произвести визуальную оценку измерений и по величине рассогласования сделать заключение о точности работы поверяемого датчика и возможности его дальнейшего использования. Результаты измерений и величина рассогласования, данные о приборах и условиях в которых производилась работа при необходимости заносятся в архив для последующей обработки или передаются в ПК для автоматического формирования типового протокола поверки.


- Возможно осуществление поверки различных приборов контроля давления: преобразователей давления, манометров, тягонапоромеров, реле давления и т. п.;
- Измерение унифицированных сигналов испытуемого ПД, образцового давления (относительная погрешность от ±0,02 %, определяется моделью подключенного ПДЭ-020(И)), расчет погрешности, конфигурирование и градуировка НАRT-устройств, одновременная визуализация всех данных на дисплее калибратора все это делает работу по поверке датчиков давления легкой, понятной и продуктивной;
- Возможность ручного введения показаний как эталонных СИ (например грузопоршневых манометров), так и рабочих СИ (например стрелочных манометров);
- Питание поверяемых электронных преобразователей давления с унифицированным токовым сигналом =24 В осуществляется от калибратора ИКСУ-2012;
- Проверка состояний реле испытуемого оборудования.

Поверка термопреобразователя производится путем сравнения его показаний с показаниями цифрового термометра эталонного ТЦЭ-005/МЗ. ТЦЭ-005/МЗ производит измерения температуры термопреобразователей платиновых ТСП, термометров сопротивления платиновых вибропрочных эталонных ПТСВ (2 и 3 разряда), а также ТСП с индивидуальными статическими характеристиками (ИСХ). Результаты измерений от поверяемого и эталонного датчиков выводятся на дисплей ИКСУ-2012. Пользователь имеет возможность произвести визуальную оценку измерений и по величине рассо-гласования сделать заключение о точности работы поверяемого датчика и возможности его дальнейшего использования. Результаты измерений и величина рассогласования, данные о приборах и условиях в которых производилась работа при необходимости заносятся в архив для последующей обработки или передаются в ПК для автоматического формирования типового протокола поверки.

- Возможно осуществление поверки ТС и ТП, термопреобразователей с унифицированным выходом;
- Одновременная визуализация всех данных на дисплее калибратора;
- Питание поверяемых термопреобразователей с унифицированным токовым сигналом осуществляется от калибратора ИКСУ-2012;
- Возможность ручного введения показаний как эталонных СИ (например калибраторов температуры), так и рабочих СИ (например жидкостных термометров);
- Возможность конфигурирования и градуировки HART-устройств;
- Проверка состояний реле испытуемого оборудования.




Поверка вторичных приборов. Данный режим предназначен для проверки точности работы измерительных преобразователей и других аналогичных приборов. Сигнал, эмулируемый ИКСУ-2012, подается на вход испытуемого при-бора, который формирует на выходе унифицированный сигнал, далее сигнал поступает на измерительный вход ИКСУ-2012, преобразуется в физическую величину по заданному пользователем закону, и результат выводится на дисплей.

Осуществляется одновременная поверка не только измерительной, но и генерирующей части вторичных приборов, оценка их функционирования и параметров точности. Результаты поверки при необходимости заносятся в архив для последующей обработки или передаются в ПК для автоматического формирования типового протокола поверки.

В режиме поверки вторичных приборов ИКСУ-2012 генерирует выходной сигнал, имитирующий:

- термоэлектрический преобразователь (ТП);
- термопреобразователь сопротивления (ТС);
- источник постоянного напряжения (мВ, В);
- источник постоянного тока (мА);
- сопротивление постоянному току (Ом);
- унифицированный сигнал силы или напряжения постоянного тока, (датчики давления, термопреобразователи с унифицированным выходным сигналом, тензометрические мосты и т. д.) с преобразованием из физической величины (°С, кПа, МПа, кгс/см², кгс/м², мм. рт. ст., bar, psi) в соответствии с НПИ и ВПИ.

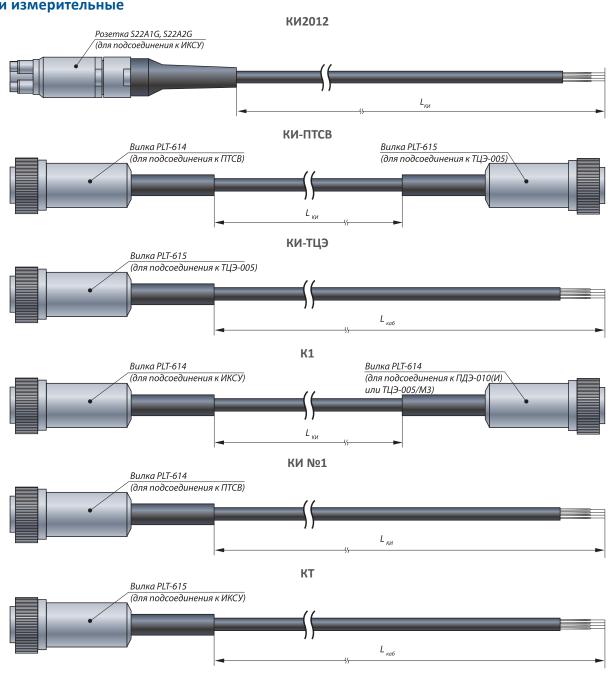
Настройка, график

Настройка — конфигурирование (настройка) ИКСУ-2012 и подключенных устройств по HART-протоколу.

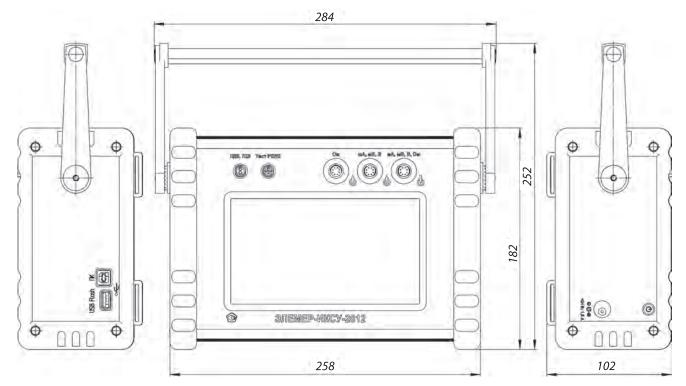
Просмотр архива — режим для просмотра записей, сделанных пользователем в режимах измерения, эмуляции и поверки. Архив может быть передан во внешнее ПО посредством съемного usb-flash носителя или при непосредственном подключении к ПК для обработки данных и формирования типовых протоколов поверки.

График — режим для просмотра и сохранения проведенных измерений в виде графика. Данный режим может быть полезен при отслеживании динамики развития различных процессов. Массив данных может быть сохранен на съемный usbflash носитель.

Соединительные кабели


Таблица 3

Номер кабеля, назначение	Код при дополнитель- ном заказе	Состав базовой комплек- тации, кол-во
№1 — кабель для подключения ИКСУ-2012 к ТП типа ТХА (К) в режимах измерения и воспроизведения сигналов от указанного типа ТП	КИ2012К	1 шт.
№2 — кабель для подключения ИКСУ-2012 к ТП типа ТХК (L) в режимах измерения и воспроизведения сигналов от указанного типа ТП	КИ2012L	1 шт.
№3 — кабель для подключения ИКСУ-2012 к ТС по трехпроводной схеме в режимах измерения температуры и сопротивления	КИ2012R1	1 шт.
№4 — кабель для подключения ИКСУ-2012 к устройствам по четырехпроводной, трехпроводной и двухпроводной схеме в режимах воспроизведения температуры и сопротивления	КИ2012R2	1 шт.
№5 — кабель для подключения ИКСУ-2012 к устройствам в режимах измерения и воспроизведения напряжения	КИ2012U	1 шт.
№6 — кабель для подключения ИКСУ-2012 к устройствам в режимах измерения и воспроизведения сигналов в виде силы постоянного тока с внутренним блоком питания 24 В	КИ2012I2	1 шт.
№7 — кабель для подключения ИКСУ-2012 к устройствам в режимах измерения и воспроизведения сигналов в виде силы постоянного тока с внешним блоком питания 24 В	КИ2012I1	1 шт.
№8 — кабель для подключения ИКСУ-2012 к устройствам при тестировании реле в режимах измерения и воспроизведения сигналов и по-верки датчиков давления (ДД)	КТ	1 шт.
№9 — кабель для подключения ИКСУ-2012 по четырехпроводной, трехпроводной и двухпроводной схеме в режимах воспроизведения температуры и сопротивления (для тестирования модулей «EL-4000»)	КИ2012R3	_


Номер кабеля, назначение	Код при дополнитель- ном заказе	Состав базовой комплек- тации, кол-во
№10 — Кабель для подключения ИКСУ-2012 к ПДЭ-010(И), ПДЭ-020ИЕх и ТЦЭ-005/М3	K1	1 шт.
№11 — USB A-B для связи ИКСУ-2012 с ПК	USB A-B	1 шт.
Кабель для подключения ТЦЭ-005/МЗ к первичным преобразователям температуры. Кабель имеет на выходе 4 провода	ки-тцэ	1 шт.*
Модуль интерфейсный МИГР-05U-2 для питания и подключения ПДЭ-010 и ТЦЭ-005/М3 к ПК (через USB-порт)	МИГР-05U-2	1 шт.**
Кабель для подключения ПТСВ-1, ПТСВ-2К, ПТСВ-3, ПТСВ-4, ПТСВ-5 к термометру цифровому эталонному ТЦЭ-005/МЗ	ки-птсв	1 шт.***
Кабель для подсоединения ПТСВ-1, ПТСВ-3, ПТСВ-4, ПТСВ-5 к измерительной аппаратуре. Кабель имеет на выходе 4 провода МГТФ-0,07 мм²	КИ №1	1 шт.****
Кабель для подключения ИКСУ-2012 к ТП типа ТЖК (J) в режимах измерения и воспроизведения	КИ2012Ј	_
Кабель для подключения ИКСУ-2012 к ТП типа ТПР (В) в режимах измерения и воспроизведения	КИ2012В	_
Кабель для подключения ИКСУ-2012 к ТП типа ТПП (S) в режимах измерения и воспроизведения	КИ2012S	_
Кабель для подключения ИКСУ-2012 к ТП типа ТМК (Т) в режимах измерения и воспроизведения	КИ2012Т	_
Кабель для подключения ИКСУ-2012 к ТП типа ТНН (N) в режимах измерения и воспроизведения	КИ2012N	_
Разъем S22A1G (для самостоятельного изготовления кабелей)	S22A1G	_
Разъем S22A2G (для самостоятельного изготовления кабелей)	S22A2G	_

- * при заказе ТЦЭ-005/МЗ один кабель КИ-ТЦЭ входит в базовый комплект поставки;
- ** при заказе ТЦЭ-005/M3 один модуль МИГР-05U-2 входит в базовый комплект поставки;
- ***- при заказе ПТСВ один кабель КИ-ПТСВ входит в базовый комплект поставки;
- **** при заказе ПТСВ один кабель КИ №1 входит в базовый комплект поставки.

Кабели измерительные

Габаритные размеры

Пример заказа

-	ИКСУ-2012	НБ	KM	КИ2012Ј	K	ТУ	_
	1	2	3	4	5	6	

- 1. Тип прибора
- 2. Персональный компьютер типа ноутбук (опция)* НБ
- 3. Комплект компьютерная мышь и клавиатура (опция) КМ
- 4. Наличие дополнительных кабелей (опция таблица 3)
- 5. Кейс транспортировочный (опция) К
- 6. Обозначение технических условий (ТУ 4381-113-13282997-2013)

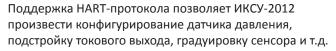
Примеры комплектов оборудования для организации рабочих мест метролога

На базе ИКСУ-2012 возможно формирование поверочного комплекта.

Состав комплекта оборудования

- **Калибратор-измеритель** унифицированных сигналов прецизионный ИКСУ-2012 со встроенным программным обеспечением. ИКСУ-2012 собирает информацию со всех подключенных устройств, производит измерение и генерацию сигналов, расчет погрешностей и формирование протокола поверки.
- Внешние эталонные модули давления ПДЭ-020(Ex) (без индикации), ПДЭ-020И(Ex) (с ЖК-индикацией). В зависимости от требуемого диапазона измерений давления выбирается необходимое количество эталонных преобразователей ПДЭ.
- Платиновые термометры сопротивления эталонные вибропрочные ПТСВ.
- Внешний эталонный цифровой термометр ТЦЭ-005/МЗ (для измерения сигнала от эталонного ПТСВ).
- Помпы ручные пневматические и гидравлические (задатчики давления): PV-60, P-350, P-700, P-1000, PV-210, PV-411, PV-411P.
- Прессы ручные пневматические: PRV-6, PRV-60, PRV-160, СГП-1000.
- Прессы ручные гидравлические: PR-1200, PR-1600, CГ-1000-T, СГП-1000.
- Калибраторы температуры эталонные.
- Термостаты жидкостные.
- **Кабели и шланги** в комплекте измерительные кабели для ИКСУ, шланги и переходники для подключения различных измерительных преобразователей.
- Кейс для переноски ИКСУ-2012 и эталонных преобразователей.

Информация для заказа комплектного оборудования приведена в соответствующих главах.


Периферийные устройства для комплекта (опция)

- Беспроводная клавиатура и мышь для подключения к ИКСУ-2012
- Персональный компьютер (ПК) с программным обеспечением (ПО) для управления режимами работы ИКСУ-2012 и создания протоколов поверки. В качестве ПК может использоваться как стационарный, так и переносной компьютер типа Notebook.
- Принтер для вывода информации на бумагу, протоколирования результатов калибровки и поверки.

^{* —} в базовый комплект поставки входит компакт-диск с программой «Автоматизированное рабочее место ИКСУ-2012» («АРМ ИКСУ-2012»). При выборе опции «НБ» поставляется ноутбук с установленным «АРМ ИКСУ-2012».

Принцип действия при поверке датчиков давления

Принцип действия ИКСУ-2012 в режиме воспроизведения и измерения давления состоит в следующем. Измеряемое давление, созданное с помощью помпы или пресса, подается непосредственно на эталонный модуль давления ПДЭ-020(Ех), ПДЭ-020И(Ех) и на поверяемый (калибруемый или градуируемый) датчик давления. Для индикации значения давления, измеренного ПДЭ-020, можно использовать ИКСУ-2012 или ПК. Значение давления, измеренное с помощью ПДЭ-020И, ПДЭ-020ИЕх, отображается на его индикаторе, экране ИКСУ-2012 или мониторе ПК. Значение давления, измеренное поверяемым датчиком, отображается на экране ИКСУ-2012 или мониторе ПК. Далее -ИКСУ-2012 рассчитывает погрешность, тестирует реле датчика давления и ставит заключение о пригодности испытуемого оборудования.

Принцип действия при поверке датчиков температуры

В термостатированное температурное поле калибратора температуры или термостата, погружается поверяемый термопреобразователь (ТС, ТП, термопреобразователи с унифицированным выходным сигналом) и платиновый термометр сопротивления эталонный вибропрочный ПТСВ. ТЦЭ-005/МЗ измеряет сопротивление ПТСВ и преобразует его согласно ИСХ. ИКСУ-2012 принимает оцифрованное значение температуры от ТЦЭ-005/МЗ и производит измерение сигнала поверяемого преобразователя температуры. Значения температуры, измеренные с помощью ТЦЭ-005/МЗ и поверяемого преобразователя температуры, отображаются на экране ИКСУ-2012 или мониторе ПК. Далее ИКСУ-2012 рассчитывает погрешность, тестирует реле датчика температуры и ставит заключение о пригодности испытуемого оборудования. Анализ для ТС и ТП производится согласно ГОСТ 6651-2009 и ГОСТ Р 8.585-2001 (допустимая величина отклонения рассчитывается автоматически в зависимости от класса испытуемого оборудования и эталонного значения температуры). Для термопреобразователей с унифицированным сигналом анализ проводится по заявленной для испытуемого оборудования основной приведенной относительной погрешности.

Поддержка НАRT-протокола позволяет ИКСУ-2012 произвести конфигурирование преобразователей температуры с унифицированным выходным сигналом 4...20 мА, подстройку токового выхода, градуировку сенсора и т.д.

